JYE Tech DSO150

There is now (Sept. 2017) a low cost (18 EUR) Digital Storage Oscilloscope (DSO shell) from company JYE Tech available, e.g. banggood.com, search for Product ID = 1093865.




In order to make the DSO more useful, tree modifications are made.

Rechargeable Battery Pack

On Ebay.de you can buy a 6 x AA battery housing (ID number 162434646097, 1.6 EUR) with 15 cm wires and an ON-OFF sliding switch. To connect to the DSO150 you need a DC plug 5.5/2.1 mm (e.g. ebay.de ID no. 152190640539, for about 10 pc. 2 EUR).

/!\ Because of the low voltage (7.4 V) you need to short the inverse-polarity protection diode. See the picture on the right for the wiring. The voltage regulators 78L05 need minmum 7 V for the voltage regulation. So, be careful to do not inverse the polarity of the power supply wiring.

USB - UART Converter

In order to allow a firmware update, or to capture waveform data via USB connection (needs toshi firmware 60B), you need to adopt an USB-UART converter. Fortunately you get on ebay.de (ID no. 381765079624, 1.15 EUR) a little module which just fits into the DSO150 housing, and has on the data lines the necessary 3.3 V level. The USB plug is micro USB.



In order to make the firmware update easier, the solder jumpers J1 and J2 are routed with wires to 2mm spacing posts, see the picture on the right. I am using wire-wrap wires, because they are thin and have a good isolation.

I have mounted the posts with hot glue to the board.

/!\ Take care about the position, if you place the posts more to the right, the electrolyte capacitors of the analog board are in the way.

Firmware Mod

A nice guy provides an extended firmware 60B. You can download the software from toshi with source code. The benefits are:

Waveform Visualisation

OK, you can download the waveform data, but how can you visualate it? The necessary steps are:

  1. Capture the waveform data to a text file.

    • Start the program first, waiting for the data.

    • Push the ADJ button for the start of the data transmission.

  2. Convert the waveform data to a .csv (Comma Separated Values) file.

    • Take care to localize the decimal point.

  3. Visualise the .csv file data with the program GNUplot.

    • Take care to include the actual Date & Time in the plot.

I liked to use a software which is cross platform (Linux, Mac OS, Windows), so I decided for Python.

The five major tasks in the software are:

  1. Wait up to 60 seconds for the start of the data transmition.

  2. Read the data into a list (real time), then write all into a text file.

  3. Read the data file, then calculate the time row, localize the decimal point and write the .csv file.

  4. Prepare a parameter file for program GNUplot. Add Date & Time.

  5. Call GNUplot with the parameter file.

    • The terminal command line looks like:

        $ python dso150-p23.py -pd
        # option -p means capture data and write a .csv file
        # option -d means plot data

Liste der Seiten in dieser category:

-- RudolfReuter 2017-10-07 13:21:29

Go back to CategoryTechDoku or StartSeite